道路トンネル利用者への安全・安心の確保のために

佐伯市トンネル長寿命化修繕計画

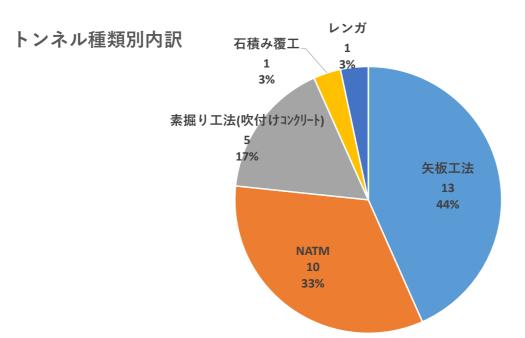

会佐伯市 Saiki City

2020年3月(改訂)

2023年3月(第2回改訂)

1 トンネルの高齢化

佐伯市が管理する道路トンネル(以下「トンネル」という)は、令和4年11月現在で30トンネルあり総延長は、約7.2 kmになります。そのうち、高度経済成長期または以前に建設されたトンネルで建設後50年以上経過するトンネルは全体の53%を占め、15年後には63%、30年後には90%まで増加します。


佐伯市管理トンネル一覧

番号	トンネル名	路線名	所在地	完成年次	工法	総延長	幅員	等級
1	佐伯トンネル	春日通り坂の浦線	佐伯市大字葛港	不明	素掘り工法 (吹付けコンクリート)	169. 4	5. 5	D等級
2	中山第1隧道	中山線	佐伯市大字長谷	1955	石積み覆工	38. 3	2. 3	D等級
3	高松隧道	大入島北線	佐伯市大字久保浦	1962	矢板工法	125. 0	4. 6	D等級
4	大宮トンネル	前潟笹良目線	佐伯市大字戸穴	不明	素掘り工法 (吹付けコンクリート)	48. 4	3. 8	D等級
5	瀬戸坂トンネル	オレンジロード海崎上浦線	佐伯市大字戸穴	1987	矢板工法	176. 0	7. 3	D等級
6	狩生隧道	オレンジロード海崎上浦線	佐伯市大字狩生	1986	矢板工法	136.0	7. 2	D等級
7	四天トンネル	オレンジロード海崎上浦線	佐伯市大字狩生	1997	NATM	189. 0	7. 8	D等級
8	車トンネル	オレンジロード海崎上浦線	佐伯市大字狩生	1995	NATM	239. 0	6. 0	D等級
9	二栄トンネル	オレンジロード海崎上浦線	佐伯市大字二栄	1993	NATM	111.0	6. 3	D等級
10	浪太トンネル	オレンジロード海崎上浦線	佐伯市上浦大字浅海井浦	不明	矢板工法	74. 8	6. 6	D等級
11	広浦隧道	オレンジロード海崎上浦線	佐伯市上浦大字浅海井浦	不明	矢板工法	40. 3	4. 7	D等級
12	暁嵐隧道	浅海井暁嵐支1号線	佐伯市上浦大字浅海井浦	不明	矢板工法	55. 9	4. 7	D等級
13	浅海井トンネル	広浦丸碰線	佐伯市上浦大字浅海井浦	不明	素掘り工法(吹付けコンクリート)	34. 0	5. 3	D等級
14	浪太トンネル	浪太地下線	佐伯市上浦大字浅海井浦	不明	レンガ	15. 0	3. 7	D等級
15	細田トンネル	細田線	佐伯市弥生大字平井	1973	矢板工法	80.0	5. 2	D等級
16	水越トンネル	南部線	佐伯市宇目大字大平	1970	矢板工法	100.0	4. 5	D等級
17	横手トンネル	横手線	佐伯市宇目大字南田原	1960	矢板工法	38. 1	4. 0	D等級
18	船隠隧道	大島線	佐伯市鶴見大字大島	1967	矢板工法	60.0	4. 1	D等級
19	新二又トンネル	沖松浦線	佐伯市鶴見大字沖松浦	2016	NATM	302. 3	10. 2	D等級
20	有明隧道	松浦有明線	佐伯市鶴見大字沖松浦	1962	矢板工法	79. 0	5. 5	D等級
21	小浦中越ふれあいトンネル	小浦中越線	佐伯市米水津大字小浦	1998	NATM	840. 0	9. 7	C等級
22	粟嶋トンネル	小浦中越線	佐伯市米水津大字小浦	1998	NATM	90.0	9. 5	D等級
23	天水トンネル	色利尾浦線	佐伯市蒲江大字畑野浦	1992	矢板工法	417. 2	7. 3	D等級
24	尾浦トンネル	新尾浦線	佐伯市蒲江大字畑野浦	1999	NATM	1226. 0	9. 3	B等級
25	えびすトンネル	蒲江中央線	佐伯市蒲江大字蒲江浦	1893	素掘り工法 (吹付けコンクリート)	51.0	2. 4	D等級
26	小向トンネル	小向小浦江線	佐伯市蒲江大字蒲江浦	1961	素掘り工法 (吹付けコンケリート)	126. 0	6. 0	D等級
27	名護屋トンネル	名護屋佐伯線	佐伯市蒲江大字野々河内浦	2000	NATM	668.0	8. 5	C等級
28	新越田尾トンネル	丸市尾越田尾線	佐伯市蒲江大字丸市尾浦	1934	矢板工法	93.8	3. 5	D等級
29	高城トンネル	樫野上城線	佐伯市大字上岡	2006	NATM	947. 0	8. 3	B等級
30	直川本匠ふるさとトンネル	小川間庭線	佐伯市直川大字下直見	2003	NATM	578. 0	8. 6	C等級
						7148.5		

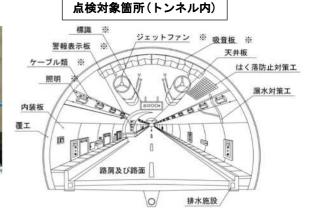
2 トンネルの現状

トンネルの種類を整理すると以下のようになります。

素掘り工法や矢板工法によるトンネル数は 20 トンネル、 $\stackrel{\uparrow}{N}$ $\stackrel{\downarrow}{\Lambda}$ $\stackrel{\uparrow}{N}$ によるトンネル数は 10 トンネル建設されています。近代技術で施工されたNATM以外の割合は全体の 67%程度となっています。

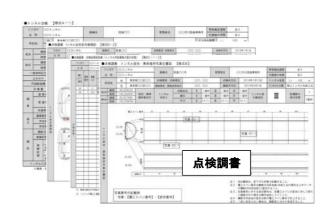
工法	本数
矢板工法	13
NATM	10
素掘り工法(吹付けコンクリート)	5
石積み覆工	1
レンガ	1

■矢板工法 ■ NATM ■素掘り工法(吹付けコンクリート) ■石積み覆工 ■レンガ


3 トンネル定期点検

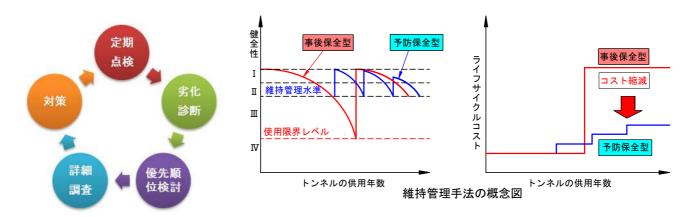
トンネルは雨や地下水による漏水や土圧、潮風等による外部からの影響を受けて経年と共に劣化が生じます。そのまま放置しておくとトンネルの状態が悪化し、コンクリート片や照明灯具等が落下する恐れがあります。 そのため、定期的に点検を行い状態を確認し、点検調書に記録して管理しております。

定期点検の様子



変状毎の健全度判定

	健全度	対策区分	定義
良	I	I	利用者に対して影響が及ぶ可能性がないため、措置 を必要としない状態
		Пþ	将来的に、利用者に対して影響が及ぶ可能性がある ため、監視を必要とする状態
	П	II a	将来的に、利用者に対して影響が及ぶ可能性がある ため、重点的な監視を行い、予防保全の観点から計 画的に対策を必要とする状態
	Ш	Ш	早晩、利用者に対して影響が及ぶ可能性が高いた め、早期に対策を講じる必要がある状態
悪	IV	IV	利用者に対して影響が及ぶ可能性が高いため、緊急 に対策を講じる必要がある状態



4 トンネル維持管理方針

【老朽化対策における基本方針】

佐伯市は管理するトンネルの定期点検を5年毎に行っており、複数のトンネルで劣化箇所を確認しました。佐伯市が管理するトンネルは交通量や利用状況が様々であり、これらを一様に対策することは効果の迅速性や予算面から妥当とは言えません。そこで『佐伯市トンネル長寿命化修繕計画』を策定し、この計画にて各トンネルの管理すべき水準を定め、トンネルの利用状況や劣化状況等を勘案して対策の優先順位を決定し、今後のトンネル維持管理に掛かる費用を算出しております。

今後、問題が生じる前に適切な対策を施し、定期的な点検を行いながら安全・安心な道路ネットワークを維持し続けます。

予防保全型 : 施設の状況をこまめに把握し、健全性が著しく低下する前の適切な時期に適切な対応を実施すること

事後保全型 : 著しい変状に至ってから対処療法的に補修・補強や更新を実施すること

【新技術等の活用方針】

土木構造物の維持管理サイクル(定期点検~詳細調査~対策)において、近年はドローンを用いた点検や画像解析によるひび割れ診断、新工法による補修など、点検の効率化やコスト縮減に寄与する新技術が開発・実用化されております。これら新技術は現地状況や劣化原因、進行具合等によって適用の可否が決まります。

今後、管理する30トンネル全てにおいて、新技術・新工法の情報収集に努め、新たな点検手法や最新の補修工法などを積極的に採用してまいります。

(新技術活用による期待される費用縮減)

(1) トンネル点検

国土交通省が公表している『点検支援技術性能カタログ』に掲載されている新技術の活用を検討します。 新技術を採用することによって点検費用の縮減を図り、従来の点検方法から更なるコスト縮減を目指します。

▶ 点検支援技術性能カタログ (https://www.mlit.go.jp/road/sisaku/inspection-support/)

(2) 長寿命化対策

「NETIS 登録技術」に掲載されている新材料・新工法や、各団体・メーカー等が謳う新工法を積極的に活用することにより、従来工法から更なるコスト縮減を目指します。

- NETIS「新技術情報提供システム」(https://www.netis.mlit.go.jp/netis/)
- 国土交通省および大分県、大分県建設技術センター等が主催する技術講習会などに参加し情報収集

5 維持管理水準

トンネル毎に維持管理レベルを設定し、維持管理水準に応じた対策を行います。 レベルに応じた対策を行うことでコスト縮減を図ります。

維持管理水準	維持管理目標	維持管理レベルのイメージ	維持管理基準			
レベル1	構成部材の健全性を確保し、トンネル としての機能を高い水準で維持する。	重要度の高いトンネル	健全性がⅡa判定で対策に 着手する。			
レベル2	構成部材のある程度の損傷進行は認 めるが、トンネルとしての機能が低下 しない程度に維持する。	重要度が中間程度のトンネル	健全性がⅡa判定は必要に 応じて対策に着手する。			
レベル3	トンネルとしての機能を最低限確保 する。	重要度の低いトンネル	健全性がⅢ判定で対策に 着手する。			
レベル4	占用物の保全機能を最低限確保する。	重要度が最も低いトンネル	健全性がⅢまたはⅣ判定で 対策の要否を検討する。			

対策優先順位は維持管理レベルおよび健全度から以下の順位とします。

	健全性評価	維持管理水準の目標										
	(注: 注: 計) 山	レベル1	レベル2	レベル3	レベル4							
IV	緊急措置段階	優先順位	優先順位 ②	優先順位 3	対策要否 の検討							
Ш	早期措置段階	優先順位	優先順位 ⑤	優先順位 ⑥	対策要否 の検討							
п	予防保全段階	優先順位	優先順位	経過観察	経過観察							

長寿命化対策は、維持管理水準 (レベル) の高いトンネルで健全度の低いトンネルから優先的行っており、既に 8 トンネルで対策が完了しております。

6 計画期間・今後の維持管理方針

トンネル長寿命化修繕計画の期間は、5年毎の定期点検結果と今後の政策を踏まえ、10年間に設定します。 今回、平成30年度以降に実施したトンネル定期点検結果を踏まえて、対策優先順位の見直しを行いました。 また、向う10年を目処に今後の維持管理方針の計画を立てました。

長寿命化修繕計画策定年月 平月 計画期間 10

平成 28 年 2 月 (平成 30 年 11 月、令和 2 年 3 月、令和 5 年 3 月一部改訂) 10 年間 (平成 28 年 4 月~令和 8 年 3 月)

点検結果(健全度)・対策年次および対策事業費

快	結果(健全度) • .	対東平次が	ってい	刈束手	未負							ı						
優先順位	トン礼名	完成年月	工法	延長	維持管理レベル	健全度	主な 補修内容	対策 事業費	令和 元年度	令和 2年度	令和 3年度	令和 4年度	令和 5年度	令和 6年度	令和 7年度	令和 8年度	令和 9年度	令和 10年度	備考
NOC LOS		7/1			J 1,10		m is r 1 to	(百万円)			定期点	検	調査補修	₩設計 ■	補修工	事 ▲			
1	浅海井トンネル	不明	素掘り工法 (吹付けコンクリート)	34. 0	3	Ш	・ひび割れ注入工 ・はく落対策エ ・空洞充填エ	15				•	•		•				
2	えびすトンネル	1893	素掘り工法 (吹付けコンクリート)	51.0	3	Ш	・はく落対策エ ・漏水対策エ	2		•			•		•				
3	暁嵐隧道	不明	矢板工法	55. 9	3	Ш	・はく落対策エ ・空洞充填エ ・覆工補強エ	49			•		•	A	A	•			
4	大宮トンネル	不明	素掘り工法 (吹付けコンクリート)	48. 4	3	ш	・はく落対策エ	2	•				•	•					
5	細田トンネル	1973	矢板工法	80.0	3	ш	・ひび割れ注入工・はく落対策エ・漏水対策エ・空洞充填エ・覆工補強エ	57		•		■ ▲	A		•				
6	佐伯トンネル	不明	素掘り工法 (吹付けコンクリート)	169. 4	3	Ш	・ひび割れ注入エ ・はく落対策エ ・漏水対策エ	51		•			•	A	•				
7	広浦隧道	不明	矢板工法	40.3	3	ш	・ひび割れ注入エ・はく落対策エ・空洞充填エ・覆工補強エ	15			•		•	•		•			
8	浪太トンネル	不明	矢板工法	74. 8	3	ш	・ひび割れ注入エ ・はく落対策エ ・空洞充填エ	17			•		•	A		•			
9	高松隧道	1962	矢板工法	125. 0	4	ш	・ひび割れ注入工・はく落対策エ・漏水対策エ・空洞充填エ・覆工補強エ	97				•							通行止め予定
10	新越田尾トンネル	1934	矢板工法	93.8	4	ш	・ひび割れ注入工・はく落対策エ・空洞充填工・覆工補強工	83			•								通行止め
11	有明隧道	1962	矢板工法	79. 0	4	ш	・ひび割れ注入工・はく落対策エ・漏水対策エ・空洞充填エ・覆工補強エ	50				•					•		
12	粟嶋トンネル	1998	NATM	90.0	1	п						•					•		
13	天水トンネル	1992	矢板工法	417. 2	1	П					•					•			令和元年度補修済み
14	小浦中越ふれあいトンネル	1998	NATM	840. 0	1	П				•					•				平成30年度補修済み
15	尾浦トンネル	1999	NATM	1226. 0	1	п			•					•					平成29年度補修済み
16	瀬戸坂トンネル	1987	矢板工法	176. 0	2	п			•					•					令和3,4年度補修済み
17	狩生隧道	1986	矢板工法	136. 0	2	П			•					•					
18	名護屋トンネル	2000	NATM	668.0	2	п					•					•			令和元年度補修済み
19	二栄トンネル	1993	NATM	111.0	2	п					•					•			
20	高城トンネル	2006	NATM	947. 0	2	п			•					•					令和4年度補修済み
21	新二又トンネル	2016	NATM	302. 3	2	п						•					•		
22	四天トンネル	1997	NATM	189. 0	2	П			•					•					令和元年度補修済み
23	車トンネル	1995	NATM	239. 0	2	п			•					•					令和元年度補修済み
24	船隱隧道	1967	矢板工法	60.0	3	п						•					•		
25	横手トンネル	1960	矢板工法	38. 1	3	п						•					•		
26	中山第1隧道	1955	石積み覆工	38. 3	3	п						•					•		
27	浪太トンネル	不明	レンガ	15. 0	3	п					•					•			
28	水越トンネル	1970	矢板工法	100.0	3	п						•					•		
29	直川本匠ふるさとトンネル	2003	NATM	578. 0	3	п						•					•		
30	小向トンネル	1961	素掘り工法 (吹付けコンクリート)	126. 0	4	п				•					•				

短期的な数値目標及びそのコスト縮減効果

【集約化・撤去に関する目標】

佐伯市が管理する 30 トンネルの利活用状況や迂回路等を確認した結果、以下 2 トンネルを通行止めまたは通行止め予定とすることとしました。

- 高松隧道(大入島北線、延長=125m、建設年 1962 年) 通行止め予定
- 新越田尾トンネル(丸市尾越田尾線、延長=93.8m、建設年 1934 年) 通行止め

前記 2 橋の通行止めを行っているトンネルで令和 10 年度までに 1 トンネルの撤去を検討し、約 10 百万円のコスト縮減を目指します。

【新技術等の活用に関する目標】

(1)トンネル点検

点検支援技術性能カタログのうち、トンネル関連は 52 の技術が挙がっており、それら技術は以下の 3 パターンに 大別されております。

- ① 画像計測技術(ひび割検出など)・・・ 22
- ② 非破壊検査技術(うき,はく離検出など)・・・ 19
- ③ 計測・モニタリング技術(変形検出など)・・・ 11

これら技術を用いることで、約1割のコスト縮減が可能と紹介されております。

(例:トンネル点検・診断システムiTOREL (アイトーレル) [技術番号:TN020005-V0121])

[トンネル延長が 500m の場合]

従来の人力点検による費用 625 万円 → 車両型による費用(打音検出+ひび割れ検出)530 万円

今後の定期点検では最新の点検支援技術を検討し、1 トンネル程度で約 0.5 百万円の費用縮減効果を目指します。

(2)長寿命化対策

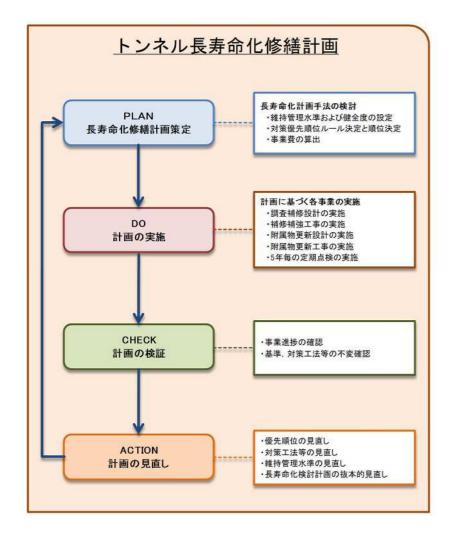
トンネルに生じる主な変状は、ひび割れ、うき・はく離、漏水の3つに大別されます。

特にコンクリートの目地部は、うき・はく離と漏水が混在することが多くあります。従来の補修工事ではうき・はく離の補修工と漏水の対策工を個別に行っておりましたが、近年開発された製品では2つの変状を1つの工法で兼ねることも可能となりました。

(例: FORCA トウメッシュ F タイプ※漏水対策兼用 [NETIS No. KK-060042-VE])

従来工法 (線導水工, FRP メッシュ工法併せて施工 5.2 万円/m) → トウメッシュFタイプ 2.5 万円/m

今後の補修・補強工事では、NETIS等を用いて新工法の採用を検討し、従来工法から約5%のコスト縮減を目指してまいります。

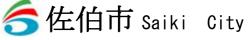

【費用縮減に関する目標】

佐伯市はトンネルの維持管理レベルを 4 段階に設定し、レベルによって維持管理水準を定めております。レベル 1 のトンネルは IV~Ⅱ a 判定の変状を対策するのに対し、レベル 3 のトンネルは IV~Ⅲ判定の変状だけ対策を行います。このように、維持管理レベルに応じた補修を行うことにより、すべての変状を対策する場合に比べ約 10 百万円のコスト縮減を目標としております。

7 長寿命化修繕計画の策定

定期点検後には最新データを基に長寿命化修繕計画の見直しを行い、予防保全型の維持管理を実施します。

『佐伯市トンネル長寿命化修繕計画』は以下のPDCAサイクルに沿って行います。



P:計画 D:実施 C:検証 A:改善

大分県佐伯市役所 建設課 道路維持係 〒876-8585 大分県佐伯市中村南町1番1号 TEL 0972-22-3526(直通) FAX 0972-24-2615 ホームページ http://www.city.saiki.oita.jp/index.html

青い海きらめく清流豊かな緑。九州で一番広いまち

